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ABSTRACT

Radiomics and machine learning (ML) are increasingly utilized to predict treatment response by uncovering latent information
in medical images. This study systematically reviews radiomics studies on brain metastasis treated with stereotactic radio-
surgery (SRS) and quantifies their radiomic quality score (RQS). A systematic search on Scopus, Web of Science, and PubMed
was conducted to identify original studies on radiomics for predicting treatment response, adhering to predefined patient,
intervention, comparator, and outcome (PICO) criteria. No restrictions were placed on language or publication date. Two in-
dependent reviewers assessed eligible studies, and the RQS was calculated based on Lambin’s guidelines. The Preferred
Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020 guidelines were followed. Seventeen studies
involving 2744 patients met the inclusion criteria out of 200 identified. All studies were retrospective and utilizing various MRI
scanners models with different field strength. The average RQS across studies was low (39.2%), with a maximum score of 19
points (52.7%). Radiomic-based models demonstrated superior predictive accuracy compared to clinical or visual assessment,
with AUC values ranging from 0.74 to 0.92. Integration of clinical features such as Karnofsky performance status, dose, and
isodose line further improved model performance. Deep learning models achieved the highest predictive accuracy, with AUC of
0.92. Radiomics demonstrate significant potential in predicting treatment outcomes with high accuracy, offering opportunities
to advance personalized management for BM. To facilitate clinical adoption, future studies must prioritize adherence to
standardized guidelines and robust model validation to ensure reproducibility.

1 | Introduction alternative interventions [3, 4]. Stereotactic radiosurgery (SRS)

and hypo-fractionated stereotactic radiation therapy (SRT) are
Brain metastases (BM) are devastating complication of systemic highly conformal noninvasive treatments delivered in one to five
malignancies, affecting approximately 30% of cancer patients [1, fractions. This technique effectively spares healthy tissue and
2]. Radiation-based treatments are the primary therapeutic op- preserves cognitive function, offering significant advantage
tion for most patients, as only a small fraction qualify for over whole-brain radiation therapy (WBRT) [4]. Both the

Abbreviations: BM, brain metastases; IBSI, image biomarker standardization initiative; MRI, magnetic resonance imaging; RQS, radiomic quality score; SRS, stereotactic radiosurgery; WBRT,
whole-brain radiation therapy.
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American Society of Radiation Oncology and the International
Stereotactic Radiosurgery Society recommend SRS and SRT as
preferred treatment modalities for BM [5-8]. However, despite
these advancements, treatment failure still occurs in 10%-30%
of cases [9].

Magnetic resonance imaging (MRI) plays a critical role in the
diagnosis and post-treatment monitoring of BM due to its su-
perior soft tissue contrast [2, 3]. Traditionally, treatment
response is assessed often via MRI by evaluating changes in the
tumor size and anatomy [10, 11]. However, these changes often
manifest only after a considerable delay, highlighting the need
for reliable biomarkers that can predict the treatment response
earlier. Early prediction can guide timely decision-making and
improve outcomes [10].

Radiomics, a quantitative image analysis technique, facilitates
the high-throughput extraction of data from medical images.
This approach provides valuable insights into tumor pheno-
types, classification, and treatment response prediction [12, 13].
By uncovering relationships in tumor characteristics that are
not visually apparent, radiomics offers a deeper understanding
of tumor characteristics [14, 15]. The process involve several
stages, including image acquisition and preprocessing, tumor
delineation, features extraction and selection, and model
development and validation [12, 16].

Over the past decade, radiomics has demonstrated significant
potential in predicting treatment outcomes across various tumor
types [17-24]. Its noninversive nature, reliance on routine
diagnostic images, and ability to analyze the entire tumor rather
than isolated regions make it particularly advantageous [25, 26].
By enabling early therapy adjustments or salvage treatments,
radiomics hold promise for improving survival rate and quality
of life in patients [9]. Additionally, radiomics can enhance
personalized treatment strategies by analyzing unique radiomic
features of brain metastases from different primary cancer types.
This allows for tailoring treatment plans to individual tumors,
improving therapeutic efficacy, minimizing side effects, and
revolutionize BM management.

Despite its potential, radiomics research faces challenges related
to standardization, reproducibility, and study quality. To
address these issues, the radiomic quality score (RQS) was
introduced in 2017 to harmonize reporting practices, stan-
dardize methodologies, and enhance research rigor [27, 28].

This systematic review aims to evaluate radiomics studies
focused on BM treated with SRS and specifically assessing their
predictive performance and adherence to the RQS. By analyzing
both methodological quality and clinical utility, this review
seeks to advance the application of radiomics in neuro-
oncology.

2 | Material and Methods
2.1 | Search Strategy

This systematic review adhered to Preferred Reporting Items
for Systematic Review and Meta-Analysis (PRISMA) 2020

guidelines. A comprehensive literature search was performed
using the patient, intervention, comparator, and outcome
(PICO) framework across three databases: Scopus, Web of
Science, and PubMed. Boolean operators and MeSH terms
were employed to maximize search sensitivity. Details of the
keywords and search strings are provided in Supporting
Information S1: Files A and B, respectively.

2.2 | Inclusion and Exclusion Criteria

The literature search was performed without restriction on data
or language. Studies were included if they met the following
criteria: (1) use of gamma knife or CyberKnife radiosurgery, (2)
involvement of patients with brain metastases, (3) utilization of
MRI for treatment planning, and (4) application of radiomics for
features extraction. Exclusion criteria included studies that (1)
employed conventional radiotherapy, (2) did not utilize radio-
mics features (e.g., studies utilizing images directly without
radiomic features extraction), (3) were nonhuman studies (e.g.,
phantom study), and (4) were review articles.

Two independent reviewers (A.U. and N.Y.) screened the arti-
cles for eligibility based on their title, abstract, and full texts,
adhering to predefined inclusion and exclusion criteria. Dis-
crepancies were resolved through consensus following the
PRISMA guidelines to ensure transparency. The search and
selection process were completed in February 2024.

2.3 | Data Extraction

Data extraction was performed using an excel spreadsheet, after
duplicate studies were removed, titles and abstract were
screened independently by two reviewers. Studies that passed
this initial screening were assessed through full text review.
Data were extracted and categorized into the following: (1) pa-
tient characteristics: authors, publication year, study design,
number of patients, lesions, and primary cancer type, (2) im-
aging details: MRI system used, field strength, segmentation
software, radiomics software, number of features extracted, and
feature selection methods; and (3) outcome: accuracy, sensi-
tivity, and AUC and any unique metrics. A summary of
extracted data is presented in Tables 1-3.

2.4 | Assessment of Radiomics Quality Score

The RQS, proposed by Lambin et al. [40] was used to assess the
quality of the radiomic workflow and reporting standards in the
included studies. The RQS comprises of 16 components grouped
into 6 key domains: domain 1: protocol quality and segmenta-
tion stability (items 1, 2, 3, and 4), domain 2: features selection
and validation (items 5 and 12), domain 3: biological, clinical
validation, and utility (items 6, 7, 13, and 14), domain 4: model
performance index (items 8, 9, and 10), domain 5: high level of
evidence (items 11 and 15), and domain 6: open science and
data sharing (item 16). Each study was assessed using the
original RQS checklist. The total RQS score was calculated and
expressed as a percentage, with a maximum score of 36 points
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30

data (%)
NR
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Features reduction/
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Manual and
automatic
Manual
Manual

software
2D UNet, 3D
MSGA
Planning
system
Treatment
planning
system

Segmentation Segmentation Radiomics
UNet and

(Continued)

Authors

Jalalifar
et al. [36]

Carloni
et al. [37]
Liao

et al. [38]

Abbreviations: DL, deep learning; ICC, interclass correlation coefficient; LASSO, least absolute shrinkage and selection operator; ML, machine learning; mRMR, maximum relevance and minimum redundance; SFS, sequential

Note: NR is used when the value is not given (not reported).
forward selection.

TABLE 1

(100%) [40-42]. Details of RQS evaluation and radiomic work-
flow diagram are presented in Supporting Information S1: File C
and Figure 1, respectively.

3 | Results

3.1 | Study Selection and Characteristics of
Included Studies

The literature search yielded 200 studies across 3 consulted
databases: Scopus (174), PubMed (24), and Web of Science (2).
After removing 16 duplicates records and excluding 130 studies
based on title review, 54 studies were assessed further. Abstract
screening excluded 29 studies for reasons detailed in Figure 2.
An additional eight studies were excluded for primarily
focusing on tumor classification rather than prediction. Ulti-
mately, 17 studies met the inclusion criteria based on the PICO
framework and were included in this review. The PRISMA
flow diagram in Figure 2 summarizes the selection process.

3.2 | General Characteristics of the Studies

The 17 included studies, all retrospective, were published be-
tween 2019 and 2023, encompassing 2744 patients (mean: 161
patients per study, range 28-831 patients), and 7377 lesions. Six
studies (35%) included patients with multiple primary cancer
type, whereas others focused on specific cancers: nonsmall cell
lung cancer (18%), lung cancer (12%), melanoma (12%), and
breast cancer (6%). Three studies (18%) did not specify the pri-
mary cancer type. Study endpoints included treatment response,
survival, clinical outcome, and BRAF mutation status prediction
in one study.

Regarding treatment modalities, nine studies (52.9%) utilized
gamma knife, three (17.6%) employed LINAC, and five (29.4%)
did not specify the SRS modality. MRI system varied: 11.8% used
GE, 23.5% Siemens, and 29.4% Philips, with 11.8% combining
Siemens and GE systems. Four studies (23.5%) did not specify
the MRI system. Most studies used 1.5T field strength (94.1%),
and all utilized contrast-enhanced T1-weighted images (CE-
T1W) for feature extraction (100%). Some studies also incorpo-
rated T2-weighted (35.3%) and T2-FLAIR sequences (35.3%),
reporting improved model performance with combined se-
quences. However, no significant performance gains were noted
with 3T MRI system (Table 3).

3.3 | RQS Assessment

The average RQS for the 17 studies was 14.1 points (39.2% of the
total score), with the highest being 19 points (52.7%) [39].

e Domain 1: All the studies reported a well document image
protocol and image segmentation methods (100%) but
nonconducted phantom assessments.

e Domain 2: All studies demonstrated good compliance with
features selection (100%) and validation using same data
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TABLE 2 | Characteristics of studies and MRI machine used included in the review.
Country Study No. of No of Primary MRI Field Pulse
Authors Year and region design patients metastases cancer Treatment machine strength sequences
Kawahara 2021 UK R 45 115 Melanoma GK Siemens 1.5 FLASH
et al. [17] model 4C  syngo MR T1IWCE
Liao 2021 Taiwan, R 256 976 NCSLC GK Not Not T1IWCE,
et al. [11] China specified mentioned T2 WL
Jiang 2022 China R 137 213 LCBM GK Siemens 3 CE-T1W,
et al. [22] magneton T1W T2WI
Skyra T2 FLAIR
Mouraviev 2020  Canada R 87 408 Not GK and GK  Philips 1.5 CE-T1W
et al. [23] specified icon ingenia T2W
FLAIR
Zheng 2021 China R 44 81 BCBM GK GE-signa 1.5 CE-
et al. [29] Perfexion T1W, T2W
DWI
DeVries 2022 Netherlands R 99 123 Multiple Novalis Siemens 1.5and 1 CE-T1WI
et al. [4] LINAC and 4 GE
Chang 2021 USA R 831 3596 Multiple Not Not Not CE-T1W
et al. [30] specified specified mentioned T2 FLAIR
Park 2021 Republic of R 83 118 LCBM GK Philips 1.5 CE-
et al. [31] Korea perfexion gyroscan T1W T2W
intera
Karami 2019 Canada R 38 38 Multiple Not Philips 1.5 T1-WCE
et al. [32] specified ingenia T2 FLAIR
(hf-SRT)
Jaberipour 2021  Canada R 120 171 Not LINAC Philips 1.5 T1-WCE
et al. [9] specified ingenia T2 FLAIR
H. Wang 2021 USA R 28 179 Multiple GK Siemens 1.5 CE-TWI
et al. [33] perfexion
Karami 2019  Canada R 100 133 Multiple Not Philips 1.5 CE-T1W
et al. [10] specified ingenia T2FLAIR
(hf_SRT)
Kawahara 2023 Japan R 30 220 Melanoma GK Siemens 1.5 CE-T1W
et al. [34] syngo FLASH
Du 2023 China R 337 337 Multiple Gamma GE signa 1.5 CE-T1W
et al. [35] Knife
Jalalifar 2022 Canada R 124 156 Not Not No details Not CE-T1W
et al. [36] specified  specified mentioned T2 FLAIR
(hf_SRT)
Carloni 2023 Italy R 148 276 NSCLC CyberKnife Siemens 1.5 CE-TW1
et al. [37] and GE
Liao 2023 Taiwan, R 237 237 NSCLC GK Not Not CE-T1W,
et al. [38] China specified mentioned  T1WI,
T2WI

Note: R mean retrospective study.
Abbreviations: CE, contrast enhanced; GE, general electric; GK, gamma knife; LCBM, lung cancer brain metastasis; LINAC, linear accelerator; NSCLC, non-small cell
lung cancer; TIWI, T1 weighted images.

(88.2%), but only 17.6%, and 5.9% validated models using

internal and external datasets, respectively.

e Domain 3: Multivariate analysis using nonradiomics data
was performed in 82.4% of studies. However, there was

poor adherence to biological correlates (29.4%) and clinical
utility (5.9%), with no comparison to gold standards.

e Domain 4: Discrimination and calibration statistics were

well reported.
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Image Acquisition
(including T1WI, T2WI, T2FLAIR)

Image Segmentation

(manually, semi-automatic and
Automatic methods)

1|02
|||023
I|||401

Features Extraction
(First order and Texture features)

000K
08
0 L

Features Selection/reduction
(LASSO, mRMR, ICC, Correlation

Analysis)

Model Development
(Machine Leaming, Deep Leaming)

Model Validation

(Internal and External validation)

FIGURE 1 | Radiomics flow diagram for implementation of radiomics study. All studies utilized different approach from the image acquisition,

segmentation process, radiomics features extraction and selection technique, model development to model validation. The arrow demonstrates the
direction of flow. ICC, interclass correlation coefficient; LASSO, least absolute shrinkage and selection operator; mRMR, minimum redundancy

maximum relevance (Images Sourced: HCTM KL, 2023).

e Domain 5: Cut-off analysis and cost-effectiveness were not
addressed, and all studies were retrospective studies.

e Domain 6: Data sharing was noted in 64.7% of studies.

Studies published in 2022 and 2023 demonstrated improved
RQS scores [22, 34, 36, 37]. The basic adherence rate to the
reporting of RQS is presented in Table 4 [40].

3.4 | Predicting Treatment Response

Radiomics models demonstrated strong predictive capabilities
for treatment response and local failure (LF), achieving AUCs
ranging from 0.74 to 0.87. These models significantly out-
performed visual evaluations, with accuracies and sensitivities
of 80% and 83%, respectively, compared to 54% and 44% for
visual evaluations [17]. Radiomics models also exhibited 7%-
25% higher AUCs than clinical models.

Integrating radiomic and clinical features further enhanced
model performance. Key clinical features included Karnofsky
performance status (KPS), presence of extracranial metastasis,
number and volume of brain metastasis (BM), tumor volume,
and treatment using WBRT [23, 38, 39]. Additional contributors
included primary tumor type, edema index, radiation dose,
isodose line, tumor site, histology, systemic therapy, and
neurological symptoms [4, 9, 23, 33]; detailed radiomics features

utilized by each study is available in Supporting Information S1:
File D.

Deep learning (DL) models improved predictive power,
achieving an AUC of 0.92, comparable to combined radiomic-
clinical models [38]. Tumor size and scanner variability influ-
ence model performance, with smaller tumors (< 7.5 cc)
yielding better result [4], combining data from similar scanners
(e.g., Magnetom/Expert) improve performance (AUC of 0.84),
whereas pairing different scanners (e.g., Avanto scanner), re-
duces performance (AUC to 0.77) [4]. Segmentation accuracy
had minimal impact, with AUCs of 0.78 for less accurate and
0.81 for more accurate manual ROIs segmentation [36]. The
radiomics platform also affected outcomes, with SOPHiA
Radiomics outperforming PyRadiomics (median C-Index of 0.70
vs. 0.63) [37].

4 | Discussion

This systematic review synthesized the current evidence on the
utilization of radiomics in predicting treatment outcomes in
brain metastasis treated with SRS, alongside an evaluation of
the methodological rigor of the included studies using the RQS.
Radiomics demonstrated a growing role of predicting treatment
response and other clinical endpoints while uncovering unique
imaging phenotypes unique associated with brain metastases
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Records identified from database
(n = 200):
PubMed/Medline (n = 24)
Scopus (n = 174)
Web of Science (n = 2)

Records screened. (n = 184)

> Records excluded based on title.

Studies assessed for eligibility.
(n=54)

Records removed before
screening:
Duplicate records removed (n
=16)

(n = 130)

Studies excluded. (n = 29)
Not radiomics (n = 11)
Not Metastasis (n = 3)
Not Gamma Knife (n = 4)

Full studies assessed for
eligibility (n = 25)

Studies included in review.
(n=17)

v

Not MRI (n = 1)
Review (n = 10)

Full studies excluded:
Mainly use Radiomic for
classification (n = 8)

FIGURE 2 | Flow diagram of preferred reporting items for systematic review and meta-analysis.

originating from different primary cancers [9, 23, 31]. This is
critical, as primary tumor origin may significantly influence the
biology, progression, and treatment response of brain metasta-
ses. These findings underscore the potential of radiomics to
provide deeper insights into tumor heterogeneity, enabling
more personalized treatment strategies tailored to the molecular
and histopathological characteristics of individual metastases.

The RQS assessment revealed significant methodological and
reporting gaps, with an average adherence rate of 14.1 (39.2% of
the maximum score). Although recent studies demonstrated
improve compliance with RQS guidelines, notable strengths
included well-documented imaging protocols, features

reduction/selection methods, and consistent image segmenta-
tion practices. However, critical deficiencies contributed to the
overall low RQS. A major limitation common to most radiomics
studies was the universal absence of phantom studies, which are
crucial for assessing intra-scanner variability and ensuring the
reproducibility of radiomics features across different imaging
platforms [43, 44]. The lack of phantom study may stem from
the logistics and financial challenges associated with conducting
these experiments, as well as retrospective nature of the studies.
Another significant gap was the limited use of external dataset
for model validation, with only 17.6% of studies validating
models internally and just 5.9% using external datasets. Despite
this, the only study with external validation demonstrated
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TABLE 4 | Basic adherence rate according to six key domains.

Adherence
Six key domains of RQS rate (%)
Domain 1: Protocol quality and stability
in images segmentation
Image protocol quality 100
Multiple segmentation 100
Phantom study 0
Multiple time point imaging 47.1
(test retest)
Domain 2: Feature selection and
validation
Features reduction or adjustment 100
Validation 5.9
Domain 3: Biologic/clinical
validation and utility
Multivariate analysis with non- 82.4
radiomic features
Biologic correlates 29.4
Comparison to “gold standard” 0
Potential clinical utility 5.9
Domain 4: Model performance index
Discrimination statistics 100
Calibration statistics 100
Cut-off analysis 0
Domain 5: High level of evidence
Prospective study 0
Cost-effective analysis 0
Domain 6: Open science and data
Open science and data 64.7

promising performance. Jalalifar et al. [36] reported an AUC of
80%, on internal validation and 82.5% on external validation.
These findings demonstrate the strong predictive performance
of radiomic models beyond their training dataset.

The reliance on single-center retrospective datasets hinders the
generalizability of radiomics models likely due to data sharing
challenges. External validation must be prioritized in features
studies to ensure models perform robustly in diverse clinical
setting, thereby enhancing clinical applicability [35, 37].

Additionally, limited reporting on clinical utility and absence of
cost effectiveness analyses restricts radiomics translation into
clinical practice. Addressing these gaps requires multidisci-
plinary collaboration among researchers, clinicians, radiologist,
oncologist, data scientist, bioinformatics, and health econo-
mists, to assess the feasibility and economic implication of
integrating radiomics into clinical workflow, particularly in
resource limited setting. Future studies should prioritize
assessing the feasibility and economic implications of inte-
grating radiomics into clinical workflows. This includes detailed
cost-effectiveness analyses to determine whether radiomics

models can optimize resources utilization and reduce unnec-
essary interventions. Moreover, interdisciplinary teams can
jointly design and implement comprehensive studies to develop
robust models. Such collaboration ensures that radiomics
studies address real-world challenges and provide actionable
insights that benefits both clinician and patients.

Lack of comparison to the gold standards and inadequate
reporting on biological correlates further impede the integration
of radiomics with other biomarkers, which is critical for
advancing precision medicine. The retrospective nature of the
studies, while common in radiomics research, limits the
robustness of the findings. Prospective studies designed with
standardized imaging protocols and adherence to IBSI guide-
lines are essential for ensuring reliability in future research.
Self-reported RQS could improve transparency and enhance the
study quality. Although RQS provides a good framework,
emerging tools such as METRICS (methods for evaluating the
reliability, integrity, and completeness of statistics) and TRIPOT
(transparent reporting of an interpretation of prediction out-
comes for diagnosis) may complement the limitations of RQS
and are recommend for consideration in future studies. These
finding are consistent with previous review by Ismail et al. [45]
who identified similar limitations in radiomics studies in head
and neck cancers.

Despite the limitations in the reporting system highlighted
above, radiomics models consistently demonstrated superior
performance in predicting treatment responses compared to
clinical and visual evaluation. The accuracy of radiomics studies
ranged from 76% to 85% with AUCs values between 0.7 and
0.92, significantly outperforming clinical models (AUC: 0.62-
0.80) [4, 9, 11, 17, 23, 39]. Kawahara et al. [17] reported an
accuracy of 80% using radiomics, compared to 54% with visual
evaluation. These findings highlight radiomics potential to
advance personalized treatment strategies.

Radiomics can identify features associated with poor treatment
response, guiding adaptive radiotherapy plans such as dose
escalation or integrating additional therapies for high-risk pa-
tients. Studies have shown that integrating radiomic and clinical
features further improve model performance, with AUC values
increasing up to 25% compared to clinical model alone [4, 9, 11,
23, 39]. However, not all clinical features were significant, fea-
tures such as Karnofsky performance status, dose and isodose
line improved performance, whereas others such as gender and
primary tumor location did not [39]. These findings underscore
the need for careful selection of clinical features to avoid
redundancy. By providing data-driven insights into tumor
behavior, radiomics can empower clinicians to make inform
decisions regarding treatment adjustments, ultimately
improving patient outcomes. Future studies incorporating long-
term follow-up could further enhance the ability to predict
sustained treatment outcomes, offering more comprehensive
insights into patient outcome.

Notably, DL models have demonstrated significant potential in
radiomics research, often surpassing traditional machine
learning models in predictive performance due to their ability to
learn complex, high dimensional representations of data. For
instance, a study reported an AUC of 0.92 using DL, a
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performance comparable to combined radiomics and clinical
models, highlighting deep learning potential to enhancing pre-
diction accuracy [38]. The strength of DL lies in its capacity to
automatically learn complex high-dimensional features repre-
sentation, making it particularly well suited for tasks involving
large scale datasets. However, its effectiveness is contingent on
the availability of large datasets. As insufficient data increases
the risk of overfitting. In contrast ML tends to perform robustly
with smaller datasets provided meaningful features are extrac-
ted, reducing susceptibility to over fitting.

These limitations can be mitigated through strategies such as
data augmentation, which artificially expands training dataset
by introducing minor variations, and transfer learning, where
pre-trained models on large dataset are fine-tuned for specific
tasks. Transfer learning enables models to leverage previously
learned features and adapt to smaller datasets. Future research
should focus on balancing the strengths of DL with its chal-
lenges by optimizing these techniques. Furthermore, available
online data, collaboration, data sharing, and synthetic data
generation should be explored to further enhance dataset
availability. Additionally, DL requires considerable computa-
tional resources and careful hyperparameter tuning. Overall,
although DL holds immense promise for future radiomics ap-
plications, addressing challenges associated with small datasets
is critical to unlock the full potential of DL models.

Tumor size also influence radiomic model performance, with
smaller tumors (< 7.5 cc) being predicted more accurately than
the larger ones [4]. Scanner variability is another critical factor
impacting model performance. Model trained on data from
closely matched scanner such as Magnetom/Expert, achieved
better performance (AUC of 0.84) than those combining data
from different MRI models, such as Avanto with other GE
scanners (AUC of 0.77) [4]. This underscores the importance of
harmonizing imaging protocols and adherence to IBSI guide-
lines and RQS, including phantom study and external valida-
tion, to address inter-scanner variability. Interestingly, variation
in field strength did not significantly affect model performance,
further emphasizing the importance of phantom study to
strengthen the inter scanner variability.

Pulse sequences choice also affected model accuracy. Jiang et al.
[22] reported that T2-weighed imaging (T2WI) outperformed
T2-FLAIR, CE-T1WI, and TWI in terms of AUC (0.725, 0.704,
0.657, 0.557, respectively), likely due to T2WT’s ability to high-
light edema in certain pathologic conditions. However, Zhang
et al. [46] reported neither T2WI nor T2 FLAIR could reliably
distinguish radiation necrosis from tumor progression. Similarly
Park et al. [31] suggested that CE-T1W texture features were
more valuable than T2WI, T2-FLAIR, or TIWI. Combining
features from multiple pulse sequences has shown to enhance
model performance, supporting the idea that different pulse
sequence contributes unique complementary information [47].
These findings highlight the importance of a multi-modal
approach, combining diverse imaging modalities and pulse se-
quences to improve radiomics model performance and provide a
more comprehensive understanding of tumor characteristics.

Surprisingly, segmentation accuracy had minimal impact model
performance (AUC 0.78 vs. 0.81) [36] suggesting that radiomics

model are robust enough to tolerate some minor segmentation
inconsistencies. This finding supports the use of simpler, auto-
mated segmentation methods, which could be more practical in
clinical setting [48]. However, variability in features extraction
across radiomics platforms affect model outcomes. For instance,
SOPHiA Radiomics outperformed Pyradiomics, achieving a
median C-index of 0.70 compared to 0.63. This is a critical
aspect of radiomics studies, and the finding underscores the
importance of utilizing platforms compliant with the IBIS
guidelines to ensure consistency and reliability in results. This
view is supported by Fornacon-Wood et al. [49] and Foy et al.
[50], which emphasize the need for standardized features
extraction practices to enhance reproducibility and clinical
applicability.

Despite these promising findings, significant limitations remain.
Key gaps include the absence of phantom studies to assess intra-
scanner variability, external validation, cost effectiveness ana-
lyses, and consideration for clinical utility, alongside the retro-
spective nature of the studies. Variability in imaging protocols,
and scanner types across studies poses a major challenge, as it
impacts the reproducibility and comparability of results. Future
studies should prioritize standardized imaging protocol to
enhance reproducibility and ensure consistent outcome across
centers. Multicenter collaborations are also essential for
accessing diverse datasets, thereby strengthening the external
validity and generalizability of radiomics models. Given the
growing importance of these findings, we recommend that
features reviews or meta-analyses include detailed imaging
acquisition protocol as reference points. Prospective studies, and
strict adherence to IBSI guidelines are critical for advancing the
clinical utility of radiomics models.

In conclusion, although radiomics demonstrates significant
potential for predicting treatment outcomes in brain metastasis,
addressing methodological and reporting gaps is vital to
improving the robustness, reproducibility, and clinical trans-
lation of these models. Future studies should strictly adhere to
RQS and IBIS guidelines.
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