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a b s t r a c t

Introduction: Image preprocessing is crucial for optimizing radiomics feature extraction, however, in
consistencies in the implementation process and a lack of universally accepted methods lead to diverse 
approaches. This study evaluates the impact of radiomics and machine learning (ML) performance in 
brain metastasis.
Methods: In this retrospective study, 108 lesions (regions of interest, ROI) were analysed. Using contrast- 
enhanced T1-weighted (T1W) images resampled to 1 × 1x1mm3, radiomics features were extracted 
using various fixed bin sizes (8, 16, 32, 64, 128, 256) and bin numbers (1, 5, 10, 25, 50) with relative ROI 
(max-min) intensity rescaling. Intensity rescaling methods, including 64 bins with relative mean ROI 
±3SD and relative min–max rescaling, were applied. Additionally, four filters  (Laplacian of Gaussian 
(LOG), Wavelet, Laws, and Mean) were tested. Feature selection was conducted using correlation 
analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression, yielding 11–18 fea
tures. K-nearest neighbors (KNN) was used for classification,  and Synthetic Minority Over-sampling 
Technique (SMOTE) addressed class imbalance.
Results: The 32-bin model achieved the highest accuracy (70 %) and AUC (0.70; 95 % CI: 0.51–0.87) 
among the bin sizes, while the 10-bin model performed best among bin numbers, with accuracy of 79 % 
and AUC of 0.69 (95 % CI: 0.45–0.89). No significant difference was found in accuracy (p = 0.278) and 
AUC (p = 0.288) between bin sizes and numbers. Mean relative ROI ±3SD rescaling improved accuracy 
(73 % vs 61 %) and AUC (0.74 vs 0.60). The LOG and mean filters demonstrated superior performance.
Conclusion: Image preprocessing choices significantly influence  radiomics features and ML perfor
mance. Standardized preprocessing is essential for enhancing reproducibility.
Implications for practice: Standardizing preprocessing methods can improve the reliability and gener
alizability of radiomics models, with potential applications in clinical decision-making for brain 
metastasis treatment.
© 2025 The College of Radiographers. Published by Elsevier Ltd. All rights are reserved, including those 

for text and data mining, AI training, and similar technologies.

Introduction

Radiomics is a non-invasive technique that extracts large 
amounts of quantitative data from medical imaging modalities 
such as magnetic resonance imaging (MRI), computed tomography 
(CT), positron emission tomography (PET), and ultrasound.1 This 
emerging tool provides valuable insights into tumor phenotypes, 

potentially serving as a “virtual biopsy”.2,3 Among these modal
ities, MRI is particularly favored for diagnosing brain tumors and 
planning Gamma Knife radiosurgery, owing to its superior soft 
tissue contrast.4–7 Numerous studies have demonstrated that 
integrating radiomics with machine learning (ML), can assist in 
predicting treatment outcomes for brain metastasis.8–14

A critical step in radiomics analysis is image preprocessing, 
which often includes normalization, filtering,  intensity rescaling, 
and intensity discretisation.3,15 The appropriate selection of image 
discretisation parameters can harmonise the process, reducing 
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non-biological variability introduced by differences in image 
acquisition parameter.16 The Imaging Biomarker Standardisation 
Initiative (IBSI) recommends resampling images and discretising 
intensities using different bin size and numbers. This stand
ardisation aligns voxel sizes, simplifies  intensity ranges, and 
minimise image noise.17 Filters are also recommended to improve 
intensity resolution and highlight specific  image properties.3

However, inconsistencies in the implementation process and a 
lack of universally accepted methods leads to diverse approach to 
image pre-processing.18

Previous studies have explored the impact of intensity dis
cretisation on the number of features, reproducibility, and stability 
in CT19 and PET20,21 and, to a lesser extent, in MRI.22–25 However, 
the number of features does not necessarily correlate with model 
performance in radiomics. To our knowledge, no study has spe
cifically  investigated the impact of intensity discretisation, in
tensity rescaling, and filters on radiomics model performance in 
MRI-based studies. In this context, the present study aims to 
assess the impact of varying intensity discretisation parameter, 
intensity rescaling and filters on the radiomics and ML perfor
mance in brain metastasis using contrast enhanced T1-weighted 
images (CE-T1WI).

Methods

Patients and image acquisition

The study included 108 brain metastases from 30 patients who 
underwent stereotactic radiosurgery (SRS) using Gamma Knife at 
the specialist centre in Hospital Canselor Tuanku Muhriz (HCTM), 
Kuala Lumpur. Only patients who met the inclusion criteria were 
included: 1) brain metastasis patients treated with Gamma knife; 
2) availability of follow-up MRI data; and 3) availability of Contrast 
enhanced T1 sequences. MRI data, including pretreatment and 
follow-up scans, were acquired on a Siemens Magnetom Avanto 
1.5 T system with a dedicated Tx/Rx CP head coil and gadolinium 
contrast agent. Pretreatment images had a resolution of 288 × 288 
pixels, and a slice thickness of 1.5 mm. These were processed using 
various discretisation techniques and filtering methods for radio
mics features extraction. Follow-up images were utilized to assess 
treatment response. Tumors were classified  using the Response 
Assessment in Neuro-Oncology Brain metastasis (RANO-BM) 
criteria. We classified the complete response and partial response 
groups as “good response” while the stable disease and progres
sive disease groups were classified as “poor response”.26,27

ROI segmentation

Regions of interest (ROIs) were manually segmented slice by 
slice by an experienced neurosurgeon using the Gamma Knife 
planning system. These were verified  by an experienced neuro
radiologist. The DICOM data and ROIs were uploaded to LifeX 
radiomics software for feature extraction. Fig. 1 shows the example 
of tumor segmentation. Following IBSI guidelines, images were 
resampled to a voxel size of 1 × 1x1 mm3 to harmonise voxel size 
across scans.17 The DICOM data and segmented ROI were imported 
into the LifeX radiomics software (v7.6.0) for features extraction.28

LifeX calculates texture features only on ROIs containing 64 or 
more voxels to ensure reliable texture computation.

Features extraction

Intensity discretisation
Radiomics features were extracted from all 108 tumors, each 

containing more than 64 voxels, which is sufficient  for texture 

feature calculations. Various fixed bin sizes (8, 16, 32, 64, 128, and 
256) were tested to identify the most suitable bin size for 
capturing relevant texture within the ROI. In addition to testing 
different bin sizes, a range of fixed bin numbers (1, 5, 10, 25, and 
50) were also tested to assess their impact on model performance. 
This method divides intensity values into fixed numbers across the 
entire dataset.

A relative ROI (max-min) intensity rescaling was employed to 
normalize pixel values, The maximum and minimum intensities 
within each ROI were identified, and pixel intensities were rescaled 
accordingly. At this stage, no filters were applied, ensuring that the 
variation in performance was not influenced by any filter.

Intensity rescaling
Additionally, two different intensity rescaling methods were 

tested to assess the impact of intensity rescaling on radiomic 
features extraction and subsequently on model performance. Two 
different intensity rescaling methods tested were:

1. Relative ROI (min–max) rescaling: This method ensures the 
intensity values within the ROI are distributed between the 
minimum and maximum value of the intensities in the ROI.

2. Relative ROI (mean ± 3 SD) rescaling: this method rescales 
intensity values using the mean and 3 standard deviations 
above and below the mean of each ROI to limit the influence of 
extreme values or outliers.

Both intensity recalling methods were independently applied, 
with a fixed bin size of 64, allowing for an exploration of different 
normalization strategies on radiomics feature performance.

Filters
To further explore the impact of filters on radiomics, four filters 

were applied before feature extraction, using a fixed bin size of 64 
and relative ROI ±3 SD intensity rescaling:

1. Laplacian of Gaussian (LOG): Enhance edges and detects fine 
details by highlighting regions with rapid intensity changes, 
helping to identify boundaries within the ROI that may be 
associated with significant clinical outcomes.

2. Wavelet filter: Decomposed images into multiple frequency 
components, allowing us to capture both fine and coarse image 
patterns in the BM region, providing a comprehensive assess
ment of texture across multiple scale.

3. Laws: Focuses on capturing texture patterns such as roughness 
and smoothness within the ROI, which are often not apparent 
through visual inspection.

4. Mean filter: Smooths intensity variation and reduces noise, 
preserving larger structures within the ROI and emphasizing 
global texture features rather than pixel-level noise.

All radiomic features were extracted using LifeX (v7.6.0) 
radiomics software.28 A total of 179 features were extracted for 
each model, including 56 Texture features, 50 Morphological features 
and 73 intensity features.

The original MRI and segmentation data, as well as the clean 
extracted radiomic dataset supporting these findings, are available 
upon request to the corresponding author, subject to institutional 
and ethical guidelines.

Features selection
To mitigate overfitting and ensure the models generalizability, 

several strategies were implemented. First, pairwise correlation 
analysis was performed among to eliminate highly correlated 
features (with a threshold of 0.8).29 This step reduced the 
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complexity of the model by removing redundant features and 
retaining only unique, informative ones.

Next, LASSO (Least Absolute Shrinkage and Selection Operator) 
regression was applied as a regularization technique. LASSO 
shrinks the coefficients  of less important features toward zero, 
effectively eliminating them and further reducing the feature set. 
Only the most significant  features, with non-zero coefficients, 
were retained.

Additionally, SMOTE (Synthetic Minority Over-sampling Tech
nique) was applied to address class imbalance, by generating 
synthetic data for minority class. To assess the importance of each 
feature and prevent overfitting,  permutation feature importance 
was also used, identify retaining only the significantly contributed 
to the model's performance. All of these steps were taken to 
mitigate this risk of bias, reduce overfitting,  and improve the 
model's ability to generalize across different datasets.

Machine learning model classifier
The K-nearest neighbours (KNN) algorithm was selected as the 

classifier due to its simplicity and effectiveness in handling com
plex, multi-dimensional data. The model was trained on 70 % of 

the dataset, with the remaining 30 % used for testing and vali
dating the model's performance. A K-value of 5 and 1000 boot
straps were applied to ensure robust performance, with the goal to 
predict treatment response in brain metastasis patients.

KNN was chosen for this study due to its simplicity, interpret
ability, and non-parametric nature. This study was exploratory, 
aimed at assessing how varying preprocessing steps affect model 
performance rather than optimizing the classifier. KNN provided 
an accessible baseline for comparison, allowing us to focus on the 
impact of preprocessing without the complexity of more advanced 
models. K = 5 was selected as it offers a balance between bias and 
variance, providing a reasonable trade-off for generalization 
without overfitting  to noise. Additionally, 1000 bootstraps were 
used to assess model stability, providing more reliable estimates of 
performance metrics and helping quantify the variability of the 
model due to the small sample size.

Addressing class imbalance using SMOTE
To mitigate bias toward the minority class, the Synthetic Mi

nority Over-sampling Technique (SMOTE) was applied. which 
generates synthetic data for the minority class by interpolating 

Figure 1. CE-T1WI showing segmentation of six ROIs in different colors in four patients.
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existing samples, ensuring a more balance class distribution in the 
training set.30,31

Model performance evaluation
The KNN model's performance was assessed using accuracy, 

sensitivity, specificity, and the area under the receiver operating 
characteristic curve (AUC) metrics. To further evaluate the role of 
individual features, permutation feature importance was applied, 
which involved randomly shuffling  each feature's values and 
measuring the resulting decrease in model performance, thus 
identifying influential features.

All machine learning workflows, including feature selection, 
model training, and performance evaluation, were implemented 
using Python's Scikit-learn library (V3.12.1). The radiomic work
flow is illustrated in Fig. 2.

Results

A total of 108 brain metastasis lesions from 30 patients (13 
male and 17 female), who met the inclusion criteria, were 

analysed. Table 1 provides a summary of the patient and tumor 
characteristics. Radiomics features were extracted using varying 
bin sizes, bin numbers, intensity rescaling methods, and filters to 
evaluate their effect on model performance.

The selected features for the best model (Relative ROI: mean ± 3 
SD rescaling) includes: 5 Morphological (Compacity, Compactness2, 
Centre of Mass Shift, Radius Sphere Norm-Max Intensity Coor-Roi 
Centroid Coor-Dist, Radius Sphere Norm-Max Intensity Coor- 
PerimeterCoor-2DCoronalSmallestDist), 5 Intensity-based 

Figure 2. Radiomic workflow: starting from image acquisition, ROI segmentation, intensity discretisation and feature extraction, followed by features selection and machine 
learning model generation.

Table 1 
Patient demographics and tumor characteristics.

N Minimum Maximum Mean Std. Deviation

Age (years) 30 38 88 58.9 13.68
Follow-up time (months) 30 1 33 6.82 6.27
Pre-treatment 

volume (cm3)
108 0.010 45.334 2.966 5.790

Post-treatment 
volume (cm3)

108 0.000 39.455 2.294 6.636

% Volume changes (cm3) 108 − 909.201 100.00 13.890 138.079
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(Minimum Intensity, 75th Intensity Percentile, Intensity Histogram 
Mode, Intensity Histogram 90th Percentile, Intensity Histogram 
Maximum Grey Level), and 6 Texture (including 2 GLCM (Contrast, 
Auto correlation), and 4 GLSZM (High Gray Level Zone Emphasis, 
Small Zone High Grey Level Emphasis, Large Zone High Grey Level 
Emphasis, Grey Level Variance) (see Fig. 3).

Details of these features, including their contribution to model 
performance as calculated using permutation feature importance, 
are presented in the supplementary material (Supplementary 
Figs. S1–S17). These figures outline the importance of individual 
features in model prediction, helping highlight the most influen
tial features for improving predictive accuracy.

Bin size analysis

Six bin sizes (8, 16, 32, 64, 128, and 256) were tested for their 
impact on model performance. Models using bin size of 32, 64, and 
128 demonstrated the best performance, with the 32-bin model 
achieving the highest accuracy of 70 %, and AUC of 0.70 (95 % CI: 
0.51–0.87). The model trained using the 8-bin size performed the 
worst, with an accuracy of 52 % and AUC of 0.53 (0.33–0.73). 
Models trained with bin sizes of 16 and 256 also performed sub 
optimally, with accuracies of 58 % and 55 %, and AUCs of 0.57 
(0.30–0.82), respectively.

Bin number analysis

Five bin numbers (1, 5, 10, 25 and 50) were evaluated for their 
effect on model performance. Models using bin numbers of 5, 10 
and 25 showed comparable results, with the model using bin 
number of 10 achieving the best overall performance: 79 %, and 
AUC of 0.69 (95 % CI: 0.45–0.89). While variations in individual 
model performance were observed, no statistically significant 
differences were found in accuracy (P = 0.278) or AUC (P = 0.288) 
among models with different bin numbers and sizes.

Effect of intensity rescaling

The model trained with a bin size of 64 combined with relative 
mean ROI ± 3SD intensity rescaling outperformed those using 
relative ROI (min–max) rescaling. The mean ROI ± 3SD method 
achieved an accuracy of 73 %, sensitivity of 71 %, specificity of 71 %, 
and AUC of 0.74 (95 % CI: 0.55–0.91), compared to the relative ROI 
(min–max) intensity recalling method, which yielded an accuracy 

of 61 %, sensitivity of 59 %, specificity of 59 %, and an AUC of 0.60 
(95 % CI: 0.36–0.81).

Filter application

The impact of four filters  (LOG, Law, Mean and Wavelet) was 
examined. The Laplacian of Gaussian (LOG) and Mean filters pro
duced the best results, with the LOG filter achieving 73 % accuracy 
and an AUC of 0.66 (0.40–0.89), and the Mean filter achieving 76 % 
accuracy and an AUC of 0.64 (0.43–0.85). In contrast, the Wavelet 
filter underperformed, with an accuracy of 48 % and AUC of 0.60 
(0.34–0.84). Table 2 provides a detailed comparison of model 
performance, while Fig. 4 presents a bar chart summarizing the 
accuracy and AUC across models.

Discussion

Intensity discretisation is an essential preprocessing step in 
radiomics, offering noise-suppressing properties and optimizing 
texture calculations.17 While previous studies have evaluated the 
number of robust features derived from various discretisation 
methods,18 the quantity of features alone does not guarantee 
better model performance. This study explored the impact of in
tensity discretisation, rescaling, and filters on radiomics based ML 
models in predicting treatment response in brain metastasis. Our 
findings  confirm  that grey level and intensity discretisation 
significantly affect predictive performance.

The analysis of bin sizes revealed that models using 32, 64, and 
128 demonstrated the best performance. The model using the 32- 
bin size achieved the highest performance with an accuracy of 70 % 
and an AUC of 0.70. In contrast, the model trained using the 8-bin 
size performed the worst. Models trained with bin sizes of 16 and 
156 also performed sub optimally. These findings emphasize the 
importance of optimizing bin size to improve model efficacy, 
allowing the model to capture essential patterns without over
fitting.  Moderate bin sizes (32, 54, and 128) strike an optimal 
balance between features details and noise, allowing the model to 
capture essential patterns without overfitting. These findings align 
with Zhao et al.,24 who compared different models against a 64- 
bin and found no difference in performance between 64 and 32 
bins but reported fewer reproducible features for both high (256) 
and low16 bins sizes. Similar results have been supported by 
Khodabakhshi et al.,23 and Molina et al.,22,32 contradicting the 
notion that increasing bin numbers and sizes inherently enhances 

Figure 3. Final selected features for the best performing model (Relative ROI Mean ± 3SD) and their Importance.
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model stability.23,25 While higher bin counts may increase the 
number of features, they do not necessarily improve model per
formance. This finding is further supported by studies that use 32 
bins for feature extraction due to its performance.16

Analysis of fixed bin numbers revealed that a bin number of 10 
yielded the best performance, with an accuracy of 79 % and an AUC of 
0.69. Although these results are promising, the exploratory nature 

of the study suggests that there is still room for improvement in 
terms of clinical applicability. Further work with larger, multi-center 
datasets and more advanced classifiers  will likely improve the 
model's clinical utility. In clinical practice, a higher AUC is desired for 
making reliable predictions regarding treatment response.

While variation in individual model performance was observed, 
no statistically significant  difference was found in accuracy 

Table 2 
Features selection for the various discretisation methods, intensity rescaling and filters used. The performance of each model is given in terms of accuracy, sensitivity, 
specificity, and AUC. at 95 % CI. * Represent the best performing model for each group.

number of features selected 
by correlation matrix

number of features 
selected by LASSO

Accuracy (%) Sensitivity (%) Specificity (%) AUC (95 % CI)

Bin size
8 32 15 52 52 52 0.53 (0.33–0.73)
16 40 13 58 55 55 0.57 (0.34–0.78)
32 41 13 70 67.3 67.3 0.70 (0.51–0.87)*
64 44 14 61 59 59 0.60 (0.36–0.81)
128 49 14 61 72 72 0.62 (0.42–0.80)
256 45 16 55 53 53 0.57 (0.30–0.82)
Bin number
1 86 11 55 50 50 0.55 (0.35–0.77)
5 53 18 64 40 40 0.37 (0.15–0.61)
10 49 14 79 63 63 0.69 (0.45–0.89)*
25 44 16 58 55 55 0.61 (0.41–0.79)
50 46 17 52 55 55 0.54 (0.31–0.75)
Intensity rescaling
Relative ROI (max-min) 44 14 61 59 59 0.60 (0.36–0.81)
Relative ROI mean ± 3SD 51 17 73 71 71 0.74 (0.55–0.91)*
Filters
LOG 50 16 73 69 69 0.66 (0.40–0.89)*
Law 56 17 58 59 59 0.56 (0.32–0.79)
Mean 52 15 76 62.5 62.5 0.64 (0.43–0.85)
Wavelet 32 17 48 58 58 0.60 (0.34–0.84)

Figure 4. Performance comparison of accuracy and AUC between models.
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(p = 0.278) or AUC (p = 0.288) among the combined bin numbers 
and sizes. Models based on fixed bin sizes (FBS) marginally out
performed fixed bin numbers (FBN), demonstrating slightly better 
performance overall. Similar findings  were reported by Duron 
et al.,18 who observed that FBS models generally outperform FBN 
models, likely due to their ability to better preserve original in
tensity values, which may enhance model performance.

The lack of statistically significant differences between bin sizes 
and bin numbers reflects  the comparison across all models as a 
group, rather than evaluating individual model performance in 
isolation. Although some models were selected based on their 
overall performance in the group, the choice was made empirically 
to find  the best combination of model performance metrics, 
including accuracy and AUC, despite the absence of statistical 
significance, this approach aimed at understanding the impact of 
various of various preprocessing techniques.

Intensity rescaling techniques also significantly  influenced 
model performance. Relative intensity rescaling (mean ROI ± 3SD) 
achieved higher accuracy (73 %) and AUC (0.74, 0.55–0.91), 
compared to relative intensity ROI (min – max) method (accuracy: 
61 %, AUC 0.60 95 % 0.36–0.81). This underscore the critical role of 
rescaling in radiomic preprocessing, consistent with Leijenaar 
et al.,21 who demonstrated the dependency of texture features on 
intensity resolution. The mean ROI ± 3SD rescaling method is 
preferred for improving model accuracy and robustness because it 
limits the influence of extreme values or outliers, ensuring that the 
intensity values are normalised in a way that retains important 
features while minimizing noise, thereby improving reproduc
ibility of texture features across datasets.

Furthermore, studies have shown that rescaling techniques 
that normalize intensity values within a consistent range improve 
the predictive power,33 demonstrating that normalization 
methods improve texture features stability of texture features. The 
min–max rescaling method, while simple and effective in some 
context, tend to scale the data to a fixed range, potentially 
amplifying the influence of outliers. This may explain why mean 
ROI ± 3SD rescaling method outperformed min–max rescaling in 
our study. In clinical radiomics, where the aim is to ensure that 
features extracted are robust and reproducible across different 
scanners, protocols, and patient population, mean ROI ± 3SD is 
considered more reliable.

The evaluation of filters revealed that the Laplacian of Gaussian 
(LOG) and mean filters provided superior performance. LOG yiel
ded an accuracy of 73 % and an AUC of 0.66 (95 % CI: 0.40–0.89), 
while the mean filter achieved 76 % accuracy and an AUC of 0.64 
(95 % CI: 0.43–0.85). In contrast, the wavelet filter  under
performed, suggesting it may be unsuitable for this specific 
application in brain metastasis. The LOG filter is a well-known 
edge-detection filter that enhances fine  details by emphasizing 
regions with rapid intensity changes. This characteristic is partic
ularly important when analysing tumor boundaries or fine struc
tural differences in medical imaging. Bologna et al.,34 noted that 
while Gaussian filters,  such as LOG, often provide modest im
provements in model performance, they are particularly useful for 
enhancing the clarity of image edges, which helps the model 
better distinguish between tumor and normal tissue. Our finding 
suggest that LOG and mean filters are more suitable for improving 
model performance in this specific application. These filters pre
serve relevant structural information while reducing noise, leading 
to more reliable radiomics features for machine learning models.

The supplementary material provides a detailed breakdown of 
permutation features importance across different preprocessing 
technique (bin sizes, intensity rescaling, and filters). Certain fea
tures, such as compacity and compacness2, showed greater impact 
with higher bin sizes (e.g., 128 and 256), while intensity histogram 

mode and minimum intensity were more influential under relative 
mean ROI ± 3SD rescaling. The LOG and mean filters notably 
enhanced GLCM contrast and GLSZM features, aligning with our 
results that these preprocessing have different impact on extrac
ted features and model performance.

Although this single centre study minimized variability, the 
result highlights the substantial impact of preprocessing methods 
on radiomics features and ML model performance. Thess findings 
offer valuable guidance for researchers and clinicians in selecting 
appropriate preprocessing parameters.

Given the small sample size in this study, overfitting  was a 
potential concern. However, several techniques were used to 
reduce this risk. We performed feature selection through pairwise 
correlation analysis to eliminate highly correlated features, and 
LASSO regression, a regularization technique, was applied to 
shrink the coefficients of less important features toward zero. To 
address potential class imbalance, we used SMOTE, which gener
ates synthetic samples for the minority class. Additionally, per
mutation feature importance was used to assess the stability and 
relevance of the features, ensuring that only the most significant 
features were retained. These methods collectively ensure the 
model performs reliably despite the limited dataset, providing a 
better estimate of its generalizability.

While the study provides valuable insights into the impact of 
intensity discretization, rescaling, and filtering  of radiomic and 
machine learning models, there are several limitations that should 
be considered. The relatively small sample size consisting of 30 
patients and 108 lesions, may limits the generalizability of the 
result. A larger cohort would help strengthen the robustness of the 
findings and reduce risk of overfitting.

Additionally, the study relied on a single pulse sequence (CE- 
T1WI), which, while commonly used for tumor delineation, 
treatment planning and most radiomics study, it may not capture 
all relevant tumor characteristics. While the main aim of this study 
was to assess the impact of preprocessing, the inclusion of mul
tiple MRI sequences, such as T2 and FLAIR, could provide com
plementary information on tumor heterogeneity, improving 
model performance. Including multiple MRI sequences would 
allow for a more comprehensive assessment of tumor's structural 
and functional probertites, which could further enhance model 
performance.

Furthermore, the use of a single center dataset may limit the 
applicability of the results to broader populations. While multi- 
center data would help assess the robustness of preprocessing 
methods across different institutions, imaging protocols, and pa
tient populations, the focus of this study was specifically  to 
explore how different preprocessing steps affect model perfor
mance within a controlled, consistent dataset. Introducing multi- 
center could add variations, such as differences in scanner type 
and protocols, that may not be directly relevant to the primary 
objective of evaluating preprocessing technique. By minimize 
confounding variables, this study aimed to isolate the impact of 
preprocessing methods. However, future studies incorporating 
multi-sequence MRI data and multi-center datasets could enhance 
the external validity of the finding by allowing the models to be 
tested on more varied data, improving the generalizability of 
radiomic features across different clinical contexts.

A critical next step in improving the generalizability and clin
ical applicability of our findings is to perform external validation 
using multi-center datasets. This would allow for the evaluation of 
the model's robustness across different institutions, imaging pro
tocols, and scanner types. Moreover, the integration of multiple 
MRI sequences would enable the model to capture a broader range 
of tumor characteristics, improving its robustness for clinical de
cision-making.
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Conclusion

The study highlights the significant  impact of intensity dis
cretisation, intensity rescaling, and filters on radiomics and ML 
performance in predicting treatment response for brain metas
tasis. Standardising preprocessing parameters is crucial for 
enhancing reproducibility and ensuring and ensuring the clinical 
applicability of radiomics-based models. Future studies should 
focus on external validation as a key step in establishing the 
generalizability and clinical applicability of our model in real- 
world settings. By incorporating diverse datasets, including 
various MRI sequences, and testing across multiple centres, we can 
ensure that our findings are both robust and reproducible across 
different clinical environments.
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